

128T Monitoring Agent
Release Notes
Version 1.0.0

14 February 2020

Abstract

128T Monitoring Agent Release Notes

Contents

128T Monitoring Agent ... 3

Installation .. 3

Configuration .. 4

Directory Structure ... 5

Monitoring Agent CLI ... 7

Validation ... 7

Sample Config .. 7

Configuration ... 8

128T Collectors ... 8

Metric collector .. 8

Event Collector ... 9

Device interface state collector .. 9

Peer Path State collector ... 9

LTE Collector ... 10

128T Monitoring Agent

Monitoring agent is an entity for collecting data from a node running 128T software. It is capable of collecting the
data from several sources such as metrics, events etc. The current mechanism of monitoring a 128T router
involves doing REST or GraphQL queries from the conductor. At scale, this can be really inefficient and can be
problematic in terms of the performance of the conductor. In addition, it’s important to interact with other 3rd party
monitoring platforms as means for organizations to collect, analyze and report using various KPIs available from
128T software and other application in the network.

The monitoring agent at its core is designed to be able to push data to external platforms. It currently leverages
the telegraf collection stack on every 128T router. However, is designed with other tools and scale in mind. A
monitoring agent is composed of the following:

• monitoring-agent-cli: Used for configuring and interacting with the underlying application
• collectors A set of inputs designed to collect data from several sources such as metrics, events etc.
• targets A set of outputs for collecting and pushing the data to various data sinks such as external

monitoring platforms, files on disk etc.

Installation

The 128T Monitoring Agent is installed using the dnf utility:

dnf install 128T-monitoring-agent

example:

dnf install 128T-monitoring-agent
128 Technology 7 - x86_64
13 MB/s | 30 MB 00:02
Dependencies resolved.
===
===============================
 Package Arch Version
Repository Size
===
===============================
Installing:
 128T-monitoring-agent x86_64 1.0.0-1
128tech-release 6.7 M
Installing dependencies:
 telegraf-128tech x86_64 1.13.1-2
128tech-release 15 M

Transaction Summary
===
===============================
Install 2 Packages

Total download size: 22 M
Installed size: 97 M
Is this ok [y/N]: y
Downloading Packages:

(1/2): 128T-monitoring-agent-1.0.0-1.x86_64.rpm
6.0 MB/s | 6.7 MB 00:01
(2/2): telegraf-128tech-1.13.1-2.x86_64.rpm
10 MB/s | 15 MB 00:01

Total
13 MB/s | 22 MB 00:01
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing : 1/1
 Running scriptlet: telegraf-128tech-1.13.1-2.x86_64 1/2
 Installing : telegraf-128tech-1.13.1-2.x86_64 1/2
 Running scriptlet: telegraf-128tech-1.13.1-2.x86_64
1/2
Created symlink from /etc/systemd/system/multi-user.target.wants/telegraf.service to
/usr/lib/systemd/system/telegraf.service.
 Installing : 128T-monitoring-agent-1.0.0-1.x86_64 2/2
 Running scriptlet: 128T-monitoring-agent-1.0.0-1.x86_64 2/2
 Running scriptlet: telegraf-128tech-1.13.1-2.x86_64 2/2
 Verifying : 128T-monitoring-agent-1.0.0-1.x86_64 1/2
 Verifying : telegraf-128tech-1.13.1-2.x86_64 2/2

Installed:
 128T-monitoring-agent.x86_64 1.0.0-1 telegraf-128tech.x86_64 1.13.1-2

Complete!

Configuration

The monitoring agent has its own set of configurations and looks for inputs from specific directories on disk. By
default, the configuration for the agent should be present in /etc/128t-monitoring/config.yaml and uses
YAML format which looks something like this:

enabled: true
tags:
 key: router
 value: ${ROUTER}
sample-interval: 1
push-interval: 1
inputs:
- name: events
- name: t128_metrics
 include-outputs: [message_queue]
- name: t128_device_state
- name: t128_peer_path
- name: lte_metric
 exclude-outputs: [file]
outputs:
- name: file
- name: message_queue

The enabled field is meant as global toggle for applying the monitoring agent functionality.

The tags are used to add meta information to the collected metrics, state etc in order to make it easier to identify
the origin, ease of identification, filtering etc. By default, the agent will include the ${HOSTNAME}, ${ROUTER}
and ${NODE} tags to every collected input. The corresponding values are derived from the running system. The
same config can ideally be used for each node in the authority and the appropriate values will be determined at
runtime.

The sample-interval and push-interval indicate the frequency (in seconds) of how often the data is
collected and eventually pushed to the collection target. When the push-interval is higher than the sample-
interval, it will produce N samples collected within the push duration. As a result, its recommended to configure
the push-interval as a multiple of sample-interval.

The inputs represent a single unit of collection. This can be a combination of inputs available from telegraf
as well as other inputs developed by 128T. The function and configuration of each of the 128T provided inputs
can be found in subsequent sections. For the telegraf inputs please refer to the influx documentation online.
Each input can be a combination of one or more collectors and can contain other collector specific information.
For each of the inputs, a user can also configure an include-outputs which is a list of outputs to send the
collected information to. This allows the user to build a matrix of inputs and outputs and provides a granular
control over which input should be sent to what output. Similarly, the user can also configure a exclude-
outputs which will include all defined outputs except the one specified.

The outputs represent a data sink where the collected information is to be delivered. By virtue of using
telegraf, the monitoring agent gets automatic support of the available outputs supported by telegraf. Each
input can be configured to be delivered to one or more output.

Directory Structure

The monitoring-agent uses a well-defined directory structure where it derives the inputs from various
configuration. The following directories are especially important:

• /var/lib/128t-monitoring/inputs/ Setup the inputs directory with config files for the various
inputs enabled in the monitoring-agent configuration. The monitoring agent expects to see a
file called <input-name.conf> in this directory. Users can override the file name by specifying
conf: <filename.conf> in the input definition within the config above. This file should only
contain the telegraf definition for the input(s) that belong and not any other configuration. For
example, the configuration for the t128_metrics input would look something like this

[[inputs.t128_metrics]]
 ## When configured, the metric collector input will pull KPIs from the 128T system
 ## running on the current node. Depending on the KPI, the information can be used for
 ## monitoring various aspects of the running system such as services, interfaces, errors
etc.

 ## By default, if no configuration is present, the set of metrics defined in
 ## /etc/128t-monitoring/collectors/t128_metrics/default_config.toml will be used
 ## for monitoring. Here's a sample configuration on how to define custom metrics.
 ##
 ## [[inputs.t128_metric.metric]]
 ## name = "peer_path"
 ##
 ## [inputs.t128_metric.metric.fields]
 ## Refer to the 128T REST swagger documentation for the list of available metrics
 ## key_name = "stats/<path_to_metric>"
 ## latency = "stats/bfd/peer-path/latency"
 ##

 ## [inputs.t128_metric.metric.parameters]
 ## parameter_name = ["value1", "value2"]
 ## peer_path = ["path1"]

 timeout = "15s"

• /var/lib/128t-monitoring/inputs/ The outputs directory will contain the config files for the
various data sink configured in the monitoring-agent configuration. For each output the conf
file should contain the telegraf configuration for that one output only. This allows the
monitoring-agent to create a telegraf config per input and include the appropriate outputs. For
example:

[[outputs.file]]
 ## Files to write to, "stdout" is a specially handled file.
 files = ["stdout", "/tmp/metrics.out"]

 ## Use batch serialization format instead of line based delimiting. The
 ## batch format allows for the production of non line based output formats and
 ## may more efficiently encode metric groups.
 # use_batch_format = false

 ## The file will be rotated after the time interval specified. When set
 ## to 0 no time based rotation is performed.
 # rotation_interval = "0d"

 ## The logfile will be rotated when it becomes larger than the specified
 ## size. When set to 0 no size based rotation is performed.
 # rotation_max_size = "0MB"

 ## Maximum number of rotated archives to keep, any older logs are deleted.
 ## If set to -1, no archives are removed.
 # rotation_max_archives = 5

 ## Data format to output.
 ## Each data format has its own unique set of configuration options, read
 ## more about them here:
 ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
 data_format = "influx"

• /var/lib/128t-monitoring/config When the monitoring-agent config, inputs and outputs
directories are setup correctly, the monitoring agent will then create fully formed telegraf
config per input in this folder. For example, the metrics input and the file output above will
result in a configuration file such as:

[global_tags]
router = "lte-router"
node = "lte-node"

[agent]
interval = 10
flush_interval = 20

[inputs]
[[inputs.exec]]
timeout = "15s"

commands = ["/usr/bin/metricCollector128t --config /etc/128t-
monitoring/collectors/t128_metrics/default_config.toml",]
data_format = "influx"

[outputs]
[[outputs.file]]
files = ["stdout", "/tmp/metrics.out"]
data_format = "influx"

Monitoring Agent CLI

The monitoring-agent-cli is a utility for validating and executing the configuration for the monitoring-agent.
The various components of the CLI as follows:

Validation

The monitoring-agent validate command will ensure that the monitoring-agent config along with other
inputs and outputs are correctly setup and flag any particular errors to the user. The validate command will not
make any changes to the running system.

Sample Config

The monitoring-agent-cli sample command can be used to view the various collectors that are created as
part of the 128T monitoring agent. The list-available command will simply show the set of available inputs
(and outputs) that are packaged as part of the 128T monitoring-agent. These are in addition to the one's available
natively via telegraf.For example:

monitoring-agent-cli sample list-available
inputs:
- events
- t128_metrics
- t128_device_state
- t128_peer_path
- lte_metric

The configuration for each of these inputs can be viewed via monitoring-agent-cli sample view
<plugin_name> command such as:

monitoring-agent-cli sample view t128_metrics
[[inputs.t128_metrics]]
 ## When configured, the metric collector input will pull KPIs from the 128T system
 ## running on the current node. Depending on the KPI, the information can be used for
 ## monitoring various aspects of the running system such as services, interfaces, errors
etc.

 ## By default, if no configuration is present, the set of metrics defined in
 ## /etc/128t-monitoring/collectors/t128_metrics/default_config.toml will be used
 ## for monitoring. Here's a sample configuration on how to define custom metrics.
 ##
 ## [[inputs.t128_metric.metric]]
 ## name = "peer_path"
 ##
 ## [inputs.t128_metric.metric.fields]
 ## Refer to the 128T REST swagger documentation for the list of available metrics

 ## key_name = "stats/<path_to_metric>"
 ## latency = "stats/bfd/peer-path/latency"
 ##
 ## [inputs.t128_metric.metric.parameters]
 ## parameter_name = ["value1", "value2"]
 ## peer_path = ["path1"]

Configuration

When the monitoring-agent config command is run, it will first validate and report any errors to the user.
Once valid configuration is in place, the configure command does the following at a high level:

• For each of the configured and enabled inputs, generate a telegraf config file in the
/var/lib/128t-monitoring/config directory

• Launch an instance of the 128T-telegraf service for each of the configure inputs which allows
us to run each input independently.

At this point, each input will be running a telegraf instance and will allow the collection of inputs & outputs to run
on the system.

128T Collectors

The 128T monitoring-agent comes pre-packaged with a set of collectors to assist in the monitoring of the 128T
platform. Here are the various collectors and how to use them:

Metric collector

The metricCollector128t python executable is responsible for collecting the configured metrics from a
running system. By default, the metrics specified in /etc/128t-
monitoring/collectors/t128_metrics/default_config.toml will be used by the collector. This
represents a set of pre-configured metrics that 128T recommends that we monitor. The configuration file in a
TOML definition of metrics and has the following format:

[[metric]]
 name = "service"
 [metric.fields]
 packets-received = "stats/aggregate-session/service/packets-received"
 packets-transmitted = "stats/aggregate-session/service/packets-transmitted"
 session-arrival-rate = "stats/aggregate-session/service/session-arrival-rate"
 session-departure-rate = "stats/aggregate-session/service/session-departure-
rate"
 bandwidth-received = "stats/aggregate-session/service/bandwidth-received"
 bandwidth-transmitted = "stats/aggregate-session/service/bandwidth-transmitted"
 tcp-retransmissions = "stats/aggregate-session/service/tcp-retransmissions"
 session-count = "stats/aggregate-session/service/session-count"
 [metric.parameters]
 service = []

The name becomes the name of the measurement in the context of influxdb format. The metric.fields
represent the various metrics to be collected. The packets-received in the above example will be field-name
for the stats/aggregate-session/service/packets-received KPI which is the path of that KPI from

the 128T REST API documentation. Finally, the metric.parameters can be used to configure key parameters
such as service to be used for filtering the set of collected stats. In the above example, the metrics would be
collected for all services but the service parameter can be used to specify a subset of services to monitor
instead

Event Collector

The event collector can be used for collecting and pushing events for various categories such as admin, alarm,
system, traffic and provisioning as they occur on the system. The type of the event is available via a tag and can
be used for filtering only specific events as desired. For example, the following configuration can be used for
pushing just the alarm and admin event

[[inputs.execd]]
 ## Create a stream of 128T events for alarm, audit etc. This information is useful for
 ## monitoring the health of the system.
 command = "/usr/bin/eventCollector128t"
 signal = "none"
 data_format = "influx"

 ## input event filtering based on type (admin, alarm, system, traffic, provisioning)
 ## NOTE: For information on filtering severity refer to the output configuration example
 [inputs.execd.tagpass]
 type = ["alarm", "admin"]

Device interface state collector

The deviceInterfaceStateCollector128t collector can be used for monitoring the admin, oper and
redundancy status of various device-interfaces configured on the node. The name is available as device-
interface tag and telegraf tagpass can be used to filter specific interfaces as needed. For example:

[[inputs.exec]]
 ## Collect information about the 128T device-interface admin, operational and
 ## redundancy status. This information is useful for monitoring the system health.
 commands = ["/usr/bin/deviceInterfaceStateCollector128t"]

 ## Timeout for the device-interface state collector to finish
 timeout = "5s"

 ## Data format to consume.
 ## Each data format has its own unique set of configuration options, read
 ## more about them here:
 ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
 data_format = "influx"

 ## To filter on select device interfaces, you can use the `tagpass` and `tagdrop` concepts
 ## from telegraf. For example:
 ## [[inputs.exec.tagpass]]
 ## device-interface = ["wan1"]

Peer Path State collector

The peerPathStateCollector128t collector can be used for monitoring the up/down status of all the peer
paths on the node. The various part of a peer-path such as adjacentAddress and networkInterface are
available as tags which can be filtered. For example:

[[inputs.exec]]
 ## Collect information about the 128T adjacency peer-path status. This information
 ## is useful to monitoring the secure WAN connectivity to the peers
 commands = ["/usr/bin/peerPathStateCollector128t"]

 ## Timeout for the peer-path state collector to finish
 timeout = "5s"

 ## Data format to consume.
 ## Each data format has its own unique set of configuration options, read
 ## more about them here:
 ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
 data_format = "influx"

 ## To filter on select peer-paths, you can use the `tagpass` and `tagdrop` concepts
 ## from telegraf. For example:
 ## [[inputs.exec.tagpass]]
 ## adjacentAddress = ["10.10.10.10"]
 ## networkInterface = ["wan1"]

LTE Collector

The lteMetricCollector128t collector when run will scan the current node configuration for any 128T
supported and configured LTE devices. This collector can be used for pushing the signal-strength and
carrier information to the monitoring stack. For example:

[[inputs.exec]]
 ## Collect the signal-strength and carrier information from configured LTE card(s) on
 ## the system. This information is useful for monitoring any fluctuations in carrier
 ## signal causing loss of connectivity.
 commands = ["/usr/bin/lteMetricCollector128t"]

 ## Timeout for the LTE metric collector to finish
 timeout = "10s"

 ## Data format to consume.
 ## Each data format has its own unique set of configuration options, read
 ## more about them here:
 ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
 data_format = "influx"

